**第一课时 整式的乘法**
**1. 乘法分配律**
**定义:**对于任意三个整式 A、B 和 C,都有:
A(B + C) = AB + AC
**证明:**
(A + B)(C + D) = AC + AD + BC + BD
= AC + AD + CB + DB
= AC + BC + AD + DB
= (A + B)(C + D)
**推论:**
(1) A(B - C) = AB - AC
(2) (A - B)C = AC - BC
**2. 乘法结合律**
**定义:**对于任意三个整式 A、B 和 C,都有:
(AB)C = A(BC)
**证明:**
(AB)C = A(BC)
= A(B + C)
= AB + AC
= (A + B)C
**推论:**
(1) A(BC - CD) = AB - AC
(2) A(B + C - D) = AB + AC - AD
**3. 乘法交换律**
**定义:**对于任意两个整式 A 和 B,都有:
AB = BA
**证明:**
AB = (A + 0)B
= A(B + 0)
= BA
**4. 整式的乘法运算法则**
**定义:**对于任意两个整式 A 和 B,都有:
AB = a1b1 + a1b2 + a1b3 + ... + a1bn
+ a2b1 + a2b2 + a2b3 + ... + a2bn
+ ...
+ anb1 + anb2 + anb3 + ... + anbn
**证明:**
AB = (a1 + a2 + ... + an)(b1 + b2 + ... + bn)
= (a1 + a2 + ... + an)b1 + (a1 + a2 + ... + an)b2 + ... + (a1 + a2 + ... + an)bn
= a1b1 + a1b2 + ... + a1bn + a2b1 + a2b2 + ... + a2bn + ... + anb1 + anb2 + ... + anbn
**5. 整式的乘法应用**
**例 1:**计算 (3x + 2)(2x - 1)
解:
(3x + 2)(2x - 1)
= 3x(2x - 1) + 2(2x - 1)
= 6x^2 - 3x + 4x - 2
= 6x^2 + x - 2
**例 2:**计算 (x - 2)(x^2 + 2x - 1)
解:
(x - 2)(x^2 + 2x - 1)
= x(x^2 + 2x - 1) - 2(x^2 + 2x - 1)
= x^3 + 2x^2 - x - 2x^2 - 4x + 2
= x^3 - x^2 - 5x + 2